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I Abstract
Mapping Inundation area caused by severe weathers primarily relies on 

synthetic aperture radar (SAR) data because of its imaging capacity in all-

weather, fine resolution and current abundance. A near real time(NRT) 

mapping system is crucial for loss assessment, disaster alleviation and 

insurance estimation and yet in vacant. We have develop an NRT radar 

produced inundation diary system (RAPID)(Shen et al., 2017) that attempts to 

address the automation and accuracy problems and to provide readily 

applicable inundation extent information. RAPID is fully automatic and the 

resultant quality is close to optical water mapping result in clear weather 

conditions by means of reducing over- and under-detections caused by noise-

like speckle, water like radar response area and strong scatters, to an 

insignificant level. RAPID can serve as kernel algorithm for flood-inundation 

product of existing and to be launched satellites equipped with a high 

resolution SAR sensor such as ALOS, Sentinel-1, TerraSAR-X and SWOT.

What is missing? An operational inundation mapping framework by SAR data
Xinyi Shen1,2, Emmanouil N. Anagnostou1,2, Lian He3, Ziyue Zeng3,4,5, Albert J. Kettner4,5 & Yang Hong6

1Civil & Environmental Engineering, University of Connecticut, Storrs, CT, 06269-3037,   4Dartmouth Flood Observatory, University of Colorado, Boulder, CO 80303
2Eversource Energy Center, University of Connecticut, Storrs, CT, 06269-5276, 5Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, 80303
3Institute of Hydrology & Water Resources, Tsinghua University, Beijing, China, 100084,  6Advanced Radar Research Center, University of Oklahoma, Norman, OK 73072

H53J-1603

References
[1] Shen X., et al., (2017). “What are missing? An operational inundation mapping framework by SAR 
data”, Remote Sensing of Environment, (submitted).
[2] Mladenova, I.E., Jackson, T.J., Bindlish, R., & Hensley, S. (2013). Incidence angle normalization of radar 
backscatter data. IEEE Transactions on Geoscience and Remote Sensing, 51, 1791-1804.
[3] Hagedorn, M., Smith, P., Bones, P., Millane, R., & Pairman, D. (2006). A trivariate chi-squared 
distribution derived from the complex Wishart distribution. Journal of Multivariate analysis, 97, 655-674
[4] Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., & Liu, S. (2013). Finer 
resolution observation and monitoring of global land cover: first mapping results with Landsat TM and 
ETM+ data. International Journal of Remote Sensing, 34, 2607-2654.
[5] Allen, G.H., & Pavelsky, T.M. (2015). Patterns of river width and surface area revealed by the 
satellite‐derived North American River Width data set. Geophysical Research Letters, 42, 395-402
[6] Yamazaki, D., O'Loughlin, F., Trigg, M.A., Miller, Z.F., Pavelsky, T.M., & Bates, P.D. (2014). Development 
of the global width database for large rivers. Water Resources Research, 50, 3467-3480.

Contact: Dr. Xinyi Shen (xinyi.shen@uconn.edu)

Dr. Emmanouil Anagnostou (manos@uconn.edu)

II Introduction
• NRT inundation mapping is crucial to rescue, damage recovery decisions, 

facilitate rapid assessment of property loss and damages. 

• SAR is the only reliable remote sensing resource for flood-inundation 

mapping due to its 

• all weather, diurnal working ability

• high spatiotemporal resolution

• Existing algorithms did not address the operational demands of NRT SAR 

inundation mapping 

• No water body product exists for any SAR-equipped satellites 

• The automation and quality are compromised by shadowing areas, the 

noise-like speckle, strong-scatter.

• Tedious manual editing that requires expertise may not always be 

available

• We have therefore built the RAPID system 

• is fully automated thus support NRT

• integrates statistical, morphological and machine learning approaches 

• incorporates multi-source remote sensing data products 

• reduces over- and under-detection to an insignificant level.

II Method
The framework of RAPID is depicted in Figure 1. It consists of four 

automated steps

A. Self-optimized binary classification with multiple thresholds

B. Morphological removal of over-detection (water-like radar response areas); 

C. Compensation of under-detection

D. Machine learning features based correction.

A. Binary Classification
• For incidence normalized dual-polarized intensities, I1,I2 (Mladenova et al., 

2013), their joint probability density function (PDF) is given by (1) 

(Hagedorn et al., 2006)

Framework of RAPID.
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• Γ(∙) and In (∙)-Gamma function and modified Bessel function

• n - the equivalent number of looks (ENL). 

• Iterative optimization for each swath of SAR image 

• 𝐶11, 𝐶22, 𝜌𝑐 -expectation and covariance of 𝐼1, 𝐼2
• probability density-based segment threshold, thPD

• bring the theoretical PDF closest to the histogram of water pixels 

• Multiple water masks , WMh, WMm, WMl, are generated using multi-

level threshold, thPD, thPD/30, thPD/300.
• WMh - best separability, 
• WMm - balanced over- and under detection

• WMl - low level under-detection & high level over-detection.

B. Morphologic Processing
• Water source tracing (WST)

• Region grow algorithm (RGA) on WMh(pre) and WMm(in)

• Seeds-High resolution land cover classification (LCC) (Gong et al. 

2013)

• Improved change detection (ICD)

• RGA on WMm(in)

• seeds-ΔWM= WMh(in)- WMm(pre)

• Over-detection prevention criterion

• thsize>50 pixels-size threshold - WST+ICD

• rdev<80% - developing ratio -WST+ICD

• rinund>30% - inundation ratio - WST+ICD

• rp>50% - probability ratio – ICD

C. Compensation
• Create a buffer region (extending 15 pixels) WM from Step B

• Label a buffered pixel as water if it is identified as water in the WMl

• Use RGA to remove disconnected patches this step.

D. Machine Learning-Based Correction
• Correct over- and under-detections caused by strong scatterers and speckles

• Identify lake bodies (lakes, ponds, reservoirs) LBs from all water bodies

• Train LBs and rivers separately

• Water Unit: River Cross-section (RC) and LB

• Generate training set as pixels in a buffered area from water bodies (Allen 

and Pavelsky 2015; Yamazaki et al. 2014)

• Logistic Classifier

• Probability as water for each pixel of training

• Double probability thresholds (water>0.8, non-water <0.1, no change 

in between)
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Feature Description Reason to Select Water

Unit

Feature

Type

Central channel pixel (CCP) FAC River width is related to drainage area RC Uniform

Maximum distances from both sides to CCP Further distance indicates smaller

chance of being inundated

RC Uniform

Distance from CCP RC Distributed

Maximal elevation difference to the lowest pixel Elevation difference should below the

upper limit

Both Uniform

Elevation difference ranked at 99%, 97%, 95% and 90% LB Uniform

Elevation difference the lowest pixel Both Distributed

Elevation Ratio to the highest pixel RC Distributed

Minimal probability Central river has a high probability

(works better for drier situation)

Both Uniform

Probability ranked at 1%, 2%, 5%, 10% and 20% LB Uniform

probability Both Distributed

Feature space of water bodies for the training
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Flood Triggered by Typhoon Nepartak in Yangtze River, Jul. 17, 2016
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Concept of Multi-threshold for binary classification
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